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ABSTRACT
Increasingly more software-based applications are being developed
and deployed in modern vehicles. As a result, the extensibility
of a system design has become an important issue in order to
accommodate more future applications and update of existing ones
on one hand and reduce the e!ort and cost of re-design, test and
validation on the other. In this paper, we discuss the extensibility-
driven design in the automotive E/E architecture. We explain the
motivation for such a design objective and discuss the de"nition
of extensibility metric and extensibility-driven design methods
under two di!erent setting, namely the system based on CAN bus
and FlexRay bus. Based on these two examples, we illustrate the
importance and advantages of extensibility-driven design in the
automotive E/E architecture.
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1 INTRODUCTION
The automotive Electrical/Electronic (E/E) system is currently un-
dergoing drastic changes. Current premium-class vehicles may
consist of up to 100 Electronic Control Units (ECUs) and hundreds
of million lines of code [1]. Increasingly more software-based func-
tions are being developed and deployed rapidly, especially from
the domain of Advanced Driver Assistance Systems (ADAS), au-
tonomous driving and connectivity. As a result, the ability of the
system to accommodate new functions or update existing ones has
become one important requirement on the future automotive E/E ar-
chitecture. To enable this ability, however, is not an easy task. Many
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of the functions in a vehicle are implemented in a distributed man-
ner, i.e., the software implementations are partitioned into several
tasks with data dependencies. The tasks and the data transmission
are mapped on a physical architecture consisting of a number of
ECUs and several communication buses. The tasks are mapped on
the ECUs and the data transmission is realized through bus proto-
cols like Control Area Network (CAN), FlexRay or Ethernet. The
common scenario is that multiple functions must share embedded
resources like the communication, computation and memory re-
sources. Therefore, the ability of the system to accommodate new
applications or applications with changed resource requirements
depends strongly on the platform parameters like mapping and
scheduling of other applications sharing the same resources.

On the other hand, the design and development of the E/E system
in the automotive domain usually follows an incremental design
process, where the design of existing components are kept un-
changed as much as possible during the next design iteration. One
important reason here is the cost of re-design. Since many of the
functions in the automotive domain are safety-critical control func-
tions, such applications need to be rigorously tested and validated
for their functional and non-functional (e.g., timing) behaviours
due to the requirements for safety and reliability. If the parameters
(e.g., task mapping, message packing and scheduling) of existing
functions need to be re-designed, they need to go through the test-
ing and validation process again, thus resulting in much more cost.
Due to the cost-sensitive nature of the automotive industry, such
e!ort and cost need to be kept as low as possible. Therefore, the
optimization of a system design towards extensibility, i.e., addi-
tional applications are more easily added to the current system
without change or with minimal changes of existing applications,
has become an important issue.

In the embedded and real-time systems community, the tra-
ditional design optimization objectives are timing and resource-
e$ciency. The problem of extensibility has not been su$ciently
addressed. In the recent years, some research works have emerged
towards the quanti"cation of extensibility and the extensibility-
driven design in di!erent settings [3–8]. Suchworks usually provide
certain metrics to quantify the extensibility of a system design and
propose extensibility-driven design methods based on these metrics.
Although extensibility is a general problem that holds true for the
entire E/E architecture, for di!erent system setting, the de"nitions
and methods might be di!erent. In this paper, we use two examples,
one for CAN-based system and one for FlexRay-based system, to
illustrate the importance and the advantages of extensibility-driven
design in the automotive E/E architecture. In Section 2, we "rst
explain a method for extensibility-driven mapping for a system
based on the CAN bus. This is followed by another approach on



extensible scheduling for a FlexRay-based system in Section 3. We
then conclude in Section 4.

2 EXTENSIBILITY-DRIVEN MAPPING FOR
CAN-BASED SYSTEMS

CAN is the prevalent bus protocol in current automotive electronic
systems. Many automotive functions (e.g., those for active safety)
collect data from sensors, perform computation on a set of ECUs
connected through CAN buses, and then send command to actua-
tors. In this section, we discuss approaches to model, analyze and
optimize extensibility for such CAN-based distributed systems.

We measure extensibility based on how much the execution time
of tasks can be increased without changing system con!guration or
violating timing constraints, as de!ned in [7, 8]. Such de!nition not
only re"ects how easy it is to add future functionality (or updating
existing ones) within minimum changes, but also shows how robust
the system is with respect to variations in task execution time. The
timing constraints include schedulability of tasks on ECUs and
messages on CAN buses, as well as end-to-end latency deadlines
along functional paths.

The automotive functions are often captured by functional blocks
communicating through signals. During software implementation,
these blocks are mapped into tasks and then tasks are allocated
to ECUs. The signals are mapped into local communication or
packed into messages that are exchanged over buses. The task
execution and message transmission are scheduled based on the
assignment of priorities. To ensure the timing constraints are met in
the worst case and to further optimize the extensibility metric, we
may formulate an extensibility-driven mapping problem to explore
the allocation of tasks to ECUs, the packing of signals to messages,
the allocation of messages to CAN buses, and the assignment of
priorities to tasks and messages. This extensibility-driven mapping
problem requires detailed timing modeling and analysis of task
execution and CAN message transmission. Next, we will introduce
the system model and extensibility metric de!nition, discuss the
key timing constraints in addressing this extensibility metric, and
brie"y introduce the algorithm for extensibility-driven mapping as
presented in [7].

2.1 System Model
We consider systems based on static priority based scheduling of
periodic tasks and messages. Periodically activated tasks on ECUs
read the input data from sensors, compute intermediate results, and
write them to output bu#ers – from where they can be read by
other tasks or used for assembling the data content of messages. Pe-
riodically activated messages transmit the data from output bu#ers
to input bu#ers on remote ECUs. Local clocks on di#erent ECUs are
not synchronized. Tasks may have multiple fan-ins and messages
can be multi-cast. Eventually, task outputs are sent to the system’s
output devices or actuators.

We assume that the functional blocks have already been mapped
into software tasks, and the functionality is now represented as
a directed task graph G = (T , ∫). T = {τ1,τ2, ...,τn } is the set
of tasks that perform the computation. ∫ = {s1, s2, ..., sm } is the
set of signals that are exchanged between task pairs. srcsi and
{dstsi , j } denote the source task and the set of destination tasks of
signal si , respectively (note that communication can be multi-cast).
During mapping, this task graph is mapped onto an architecture
platform that consists of a set of ECUs V = {v1,v2, ...,vp } con-
nected through a set of CAN buses B = {b1,b2, ...,bq }.

τi is periodically activated with period tτi , and executed with
priority γτi . The periods of communicating tasks are assumed to

be harmonic, which is usually true in practical designs. Tasks are
scheduled with preemption according to their priorities, and a total
order exists among the task priorities on each ECU. We use eτi ,v
to denote the execution time of task τi on ECU v . In the following,
the v subscript is dropped whenever the formula refers to tasks on
one ECU. Finally, rτi denotes the worst case response time of τi .

For a signal si , the ECUs to which the source task srcsi and the
destination task dstsi , j are allocated are called source and destina-
tion ECUs, respectively. If the source ECU is the same as all the
destination ECUs, the signal is local. Otherwise, it is global andmust
be packed into a message transmitted on the CAN buses between
the source ECU and all its destination ECUs. Only signals with the
same period, same source ECU and same communication bus can
be packed into the same message. For message mi , tmi denotes
its period, γmi denotes its priority, and emi denotes its worst case
transmission time on a bus with unit speed. The worst transmission
time on bus bj is emi /speedbj , where speedbj is the transmission

speed of bj . rmi is the worst case response time on a bus with unit
speed. In addition, in complex systems the source and destination
tasks may not reside on ECUs that share the same bus. In this case,
a signal exchanged among them will have to go through a gateway
ECU and be forwarded by a gateway task.

A path p on the task graph G is an ordered interleaving se-
quence of tasks and signals, de!ned asp = [τ1, s1,τ2, s2, ..., sk−1,τk ].
src(p) = τ1 is the path’s source and snk(p) = τk is its sink. Sources
are activated by external events, while sinks activate actuators. Mul-
tiple paths may exist between each source-sink pair. The worst case
end-to-end latency incurred when traveling a path p is denoted
as lp . The path deadline for p, denoted by dp , is an application
requirement that may be imposed on selected paths.

2.2 Extensibility Metrics
Di#erent metrics can be de!ned to measure the extensibility of task
execution time in a CAN-based system. The main de!nition used
in [7, 8] is a weighted sum of each task’s execution time slack over
its period:

max . E =
∑

τi ∈T

wτi

∆eτi
tτi

(1)

where a task’s execution time slack ∆eτi is de!ned as the maximum
possible increase of its execution time eτi without violating the
design constraints, assuming the execution times of other tasks are
not changed. The design constraints include resource utilization
constraints for ECUs and CAN buses, schedulability constraints for
tasks and messages, and end-to-end latency deadlines for paths.

The metric de!ned in (1) is a generic measurement of extensibil-
ity at task level, wherewτi is a preassigned weight that indicates
how likely and howmuch the task’s execution timewill be increased
in future functionality extensions. In practice, however, because of
functional dependencies, execution time increases in tasks belong-
ing to a set may need to be considered jointly. This can be done
in several ways. One possible way is in the assignment of thewτi

weights as follows: 1) Identify a set of update scenarios u1,u2, ...un .
Each scenario uk includes a group of tasks Tk to be extended, and
is assigned with a likelihood probability ρk . 2) For each update
scenario uk and τi ∈ Tk , assign a weight wik to represent how
much the task’s execution time will be increased in this scenario. 3)
Compute the !nal weightwτi of a task aswτi =

∑
k :τi ∈Tk ρk ∗wik .

In [7], a more explicit de!nition that identi!es the groups of tasks
that are functionally related is presented.



Finally, another formulation is to use execution time slack over
original execution time, i.e. ∆eτi /eτi , instead of using execution
time slack over period in (1).

2.3 Timing Constraints
To measure and optimize the above extensibility metrics, it is es-
sential to analyze the timing constraints that have to be satis!ed in
worst case.

End-to-end latency: Once tasks are allocated to ECUs, some sig-
nals are local and their transmission time is assumed to be zero.
Others are global, and need to be transmitted on the CAN buses
through messages. The time needed to transmit a global signal is
equal to the transmission time of the corresponding message. Let
rsi denote the worst case response time of a global signal si , and
assume its corresponding message ismj , then rsi = rmj .

The worst case end-to-end latency can be computed for each
path by adding the worst case response times of all the tasks and
global signals on the path, as well as the periods of all the global
signals and their destination tasks on the path.

lp =
∑

τi ∈p

rτi +
∑

si ∈p∧si ∈GS

(rsi + tsi + tdstsi
) (2)

where GS is the set of all global signals. In the case that gateways
are used across buses, the signals to and from possible gateway
tasks, as well as the response time of the gateway task itself and
the associated sampling delays must be included in the analysis.
We need to include periods of global signals and their destination
tasks because of the asynchronous sampling of communication
data, as detailed in [2, 7]. For local signals, the destination task can
be activated with a phase (o"set) equal to the worst-case response
time of the source task, under our assumption that their periods
are harmonic. In this case, we only need to add the response time
of the destination task.

For selected paths, there may be deadline constraints on end-to-
end latencies, i.e., lp ≤ dp .

Response time: As shown in (2), computing end-to-end latencies
requires the computation of task and message response times (note
that the response time of a global signal is equal to the response
time of its corresponding message). In a system with preemptive
priority-based scheduling, the worst case response time rτi for
a task τi depends on its computation time eτi , as well as on the
interference from higher priority tasks on the same ECU. In the
case of rτi ≤ tτi , rτi can be calculated as follows.

rτi = eτi +
∑

τj ∈hp(τi )

⌈

rτi
tτj

⌉

eτj (3)

where hp(τi ) is the set of higher priority tasks on the same ECU.
Worst case message response times are calculated similarly to

task response times. The main di"erence is that message transmis-
sions on the CAN bus are not preemptable. Therefore, a messagemi
may have to wait for a blocking time BLmax , which is the longest
transmission time of any frame in the system. Likewise, the message
itself is not subject to preemption from higher priority messages
during its own transmission time emi . The response time can there-
fore be calculated with the following recurrence relation, in the
case of rmi ≤ tmi :

rmi = emi + BLmax +

∑

mj ∈hp(mi )

⌈

rmi − emi

tmj

⌉

emj (4)

!"#$#%&'(%)*'+&&,-%$#,"

.#/"%&'0%-*#"/'%"1'

23))%/3'+&&,-%$#,"

(%)*'%"1'23))%/3'

04#,4#$5'+))#/"63"$

(%)*'738%&&,-%$#,"

73%-9'.$,:'

;,"1#$#,"<'

=3)

>"1

?,

Figure 1: Algorithm !ow for extensibility-driven mapping
in CAN-based systems.

For tasks and messages, their response times should be within
their deadlines to ensure schedulability. In most cases, the dead-
lines are set the same as periods, and we will have schedulability
constraints as rτi ≤ tτi and rmi ≤ tmi .

Extensibility computation: Based on the above formulas and
constraints for end-to-end latencies and response times, as well as
utilization constraints, we can compute the extensibility for each
task, denoted as ∆eτi . If ∆ri j denotes the increase of task τj ’s re-
sponse time rτj when task τi ’s computation time eτi is increased by

∆eτi , the end-to-end latency constraints and utilization constraints
are expressed as follows:

∑

τj ∈p∧τj ∈(lp(τi )∪{τi })

∆ri j ≤ dp − lp ∀p,∀τi ∈ T (5)

∆eτi
tτi
+

∑

τj ∈T(v)

(
eτj

tτj
) ≤ uv ∀v,∀τi ∈ T(v) (6)

where lp(τi ) is the set of lower priority tasks on the same ECU as
τi , T(e) denotes the set of the tasks on ECU v , and uv denotes the
maximum utilization allowed on e .

The relation between ∆ri j and ∆eτi can be derived from (3) as
follows.

∆ri j =
∑

τk ∈hp(τj )

(

⌈

rτj + ∆ri j

tτk

⌉

−

⌈

rτj

tτk

⌉

)eτk

+

⌈

rτj + ∆ri j

tτi

⌉

∆eτi ∀τj ∈ lp(τi ) (7)

∆rii = ∆eτi +
∑

τk ∈hp(τi )

(

⌈

rτi + ∆rii

tτk

⌉

−

⌈

rτi
tτk

⌉

)eτk (8)

2.4 Extensibility-Driven Mapping
Based on Equations (2) to (8), we can compute task extensibility
∆rτi for any given mapping. For instance, one simple and possibly
time-consuming approach is to use the bisection (i.e., binary search)
method. It is much more challenging to optimize the extensibility
metric as de!ned in (1) through the exploration of di"erent mapping



options (i.e., di!erent task and message allocation, signal packing,
and task and message scheduling). We may introduce variables
to represent these options and try to formulate an integrated for-
mulation for extensibility-driven mapping optimization. However,
such formulation is non-linear and cannot be linearized due to the
second term in Equation (7). It could be solved by generic nonlinear
solvers but the complexity is in general too high for industrial size
applications.

Therefore, in [7], we propose an algorithm that includes two
stages for reducing complexity: one initial stage that is based on
mixed integer linear programming (MILP), and one re"nement
stage that consists of several steps based on heuristics.

The #ow of this algorithm is shown in Figure 1. First, we decide
the initial allocation of tasks by solving an MILP formulation. Uti-
lization constraints are considered in place of the true extensibility
metric to allow a linear formulation. In this stage, we also assume
each CAN message only contains one signal, and assume the initial
task and message priorities are either given or assigned based on
rate monotonic policy. Then, a series of heuristics is used in the re-
"nement stage: in the signal packing and message allocation step, a
heuristic is used to decide signal-to-message packing and message-
to-bus allocation. In the task and message priority assignment step,
an iterative method is designed to assign the priorities of tasks and
messages. After these steps are completed, if the design constraints
cannot be satis"ed or if further improvement of extensibility is
needed, the tasks can be re-allocated and the process repeated.
Because of the complexity of the MILP formulation, a heuristic
is designed for task re-allocation, based on the extensibility and
end-to-end latency values obtained in the previous steps.

3 EXTENSIBILITY-DRIVEN DESIGN WITH
FLEXRAY

Over the last few years, FlexRay has become an important automo-
tive in-vehicle communication network for the implementation of
safety-critical and fault-tolerant systems. Typically, the design and
implementation of such systems involves intensive testing and ver-
i"cation. Correspondingly, once the system properties are veri"ed,
it is not recommended to modify the corresponding design param-
eters. Therefore, given the iterative design paradigm followed in
automotive domain, it is important to design such systems in an
extensible manner. Towards this, in this section, we will "rst discuss
the FlexRay protocol, and subsequently, we will state and explain
the extensibility metrics for FlexRay network design and describe
how schedules for such a network can be computed considering
the metrics.

3.1 The FlexRay Protocol
FlexRay supports hybrid communication protocol, and correspond-
ingly, each FlexRay time cycle is mainly partitioned into static (ST)
and dynamic (DYN) segments as shown in Figure 2. The static
segment exhibits time-division multiple access (TDMA) communi-
cation and comprises number of slots of equal length (∆), which can
be represented as SST = {1, 2, ...,N }. Here, a message assigned to
a static slot is transmitted within the corresponding time window.
Thus, the start and end of a message transmission is exactly known.
On the other hand, dynamic segment is partitioned into number
of minislots of equal length (δ ), where typically δ << ∆. A mes-
sage assigned to the dynamic segment may consume more than
one minislot as shown in Figure 2. Correspondingly, a dynamic
slot is a logical entity with one or more minislots allowing #ex-
ible TDMA communication. Here, dynamic slots are denoted by
SDYN = {N + 1, ...,M}.

cycle

slot

0

1

2

3

4

5

62

63

. 
. 

.

1 2 3 4 5 6 7 8 9

Figure 2: Example of FlexRay communication.

This hybrid communication can be realized using a slot counter,
C, where the counter starts from 1 at the beginning of each cycle.
Here, when C = j, then the messagemi assigned to the j-th slot
is sent over the bus (if ready). In the static segment, the counter is
incremented after every ∆ time units, i.e., at the end of each slot.
Correspondingly, if no new data has arrived at the beginning of
the slot then the whole slot length, i.e., ∆ time units, are wasted
as shown in Figure 2 form2 in the cycle 5. On the other hand, in
the dynamic segment, when a messagemi has some data to be sent
then the counter is updated at the end of the last minislot where the
message is transmitted. However, if there is no data then the counter
is updated at the end of the current minislot, and correspondingly,
only δ time units are wasted (refer to Figure 2 for messagesm4 and
m5). Correspondingly, the start and end of a message transmission
may vary. Thus, it may be noted that FlexRay is time-deterministic
in the static segment and resource-e$cient in the dynamic segment.

FlexRay schedules: FlexRay communication is organized as an
in"nite repetition of 64 bus cycles, i.e., the cycle counter counts from
0 to 63 and then resets. Therefore, the resource allocation in any 64
consecutive cycles will be repeated in the next 64 cycles and so on.
For this de"nition, a messagemi is transmitted with a schedule Θi

which can be represented as a tuple Θi = {Si ,Bi ,Ri }. Here, (i) Si
is the assigned slot number, (ii) the base cycle, Bi , represents the
"rst cycle where the message is allowed to be sent, and, (iii) the
cycle repetition rate, Ri , denotes the number of cycles between
two consecutive time slot allocations. In Figure 2, schedules of the
messages are given by Θ1 = {2, 0, 2}, Θ2 = {2, 1, 2}, Θ3 = {4, 1, 4},
Θ4 = {4, 0, 4}, Θ5 = {9, 0, 1} and Θ6 = {10, 0, 2}. Furthermore, it
must be noted that FlexRay allows slot-multiplexing, i.e., same slot
number can be assigned to more than one message, however, they
must not overlap. This is illustrated by {m1,m2} and {m3,m4} in
Figure 2. In addition, other FlexRay scheduling constraints include
(i) Ri ∈ {2n |0 ≤ n ≤ 6} and (ii) Bi < Ri .

3.2 A motivational example
In the iterative design paradigm of automotive domain, new ap-
plications are added onto existing systems incrementally. Let us
consider such a design iteration, where the existing FlexRay net-
work looks like as shown in Figure 2 and we want to add a message
m7 for which R7 ≤ 2 is given. Here, we will consider two options,
i.e., mappingm7 onto slot 4 and dynamic segment respectively.

(i) In the "rst case, it is not possible to mapm7 on slot 4 with the
existing schedules. However, ifm3 was schedule as Θ3 = {4, 2, 4},
then it would have been possible to map m7 as Θ7 = {4, 1, 2}.
Thus, we may say that existing schedule is less extensible with



regard to slot 4 as compared to a schedule where Θ3 = {4, 2, 4} and
Θ4 = {4, 0, 4}.

(ii) In the dynamic segment, let us consider thatm7 consumes
3 minislots if it has data required to be sent. Now, to illustrate
extensibility of dynamic segment, it is also important to consider
deadline for each real-time message mapped onto dynamic segment.
Here, we assume absolute deadlines of the messagesm5,m6 andm7
as the ends of minislots 9, 6 and 5 respectively of the corresponding
cycle where slots are allocated for them. Correspondingly, with
the existing schedule, even the best possible schedule form7, i.e.,
Θ7 = {10, 1, 2} violates the deadline for m7. However, if m5 and
m6 were mapped as Θ5 = {10, 0, 1} and Θ6 = {9, 0, 2} respectively
then Θ7 = {9, 1, 2} can satisfy the deadlines for all the messages.
Thus, it may be said that existing schedule is not extensible enough
for a future message likem7.

This example illustrates the need for extensible design for a
very small system. However, with real industrial networks with
hundreds of slots and messages, it is challenging to derive metrics
which consider the above-mentioned cases.

3.3 Extensibility Metrics
Towards quantifying the extensibility of FlexRay schedules, three
metrics can be used [4, 5], namely (i) the quality rating, (ii) grade of
extensibility and (iii) extensibility index.

Quality rating: The quality rating of a slot Sj quanti!es the real-
time capabilities of the slot while accommodating future messages.
For a particular slot Sj , this metric can be de!ned as

P1(Sj ) =




0, ∀Sj ∈ R

1, ∀Sj ∈ SST \ R

1 − e
−k (

|Sj −(N+M )|

Sj −(N+1)
)
, ∀Sj ∈ SST \ R,

(9)

where R represents the set of reserved slots and k is a coe"cient.
The reserved slots, i.e., Sj ∈ R, are not available for the current de-
sign iteration, and thus, the corresponding extensibility is 0. For an
available static slot, the timing of the slot is !xed and not in#uenced
by other messages, and thus, their quality rating evaluates to 1. On
the other hand, in the dynamic segment, the timing of an unre-
served slot is in#uenced by the messages allocated to the preceding
slots, and thus, their quality rating can be quanti!ed according to
the slot number. In general, the higher the slot number, the smaller
is the value of the quality rating. It may be noted that the idea of
extensibility here is to spare the slots with higher quality rating
for future design as much as possible while satisfying the real-time
constraints for current messages considering the worst-case in the
future. This addresses the second problem discussed in Sec. 3.2.

Grade of extensibility: This metric indicates the number of avail-
able schedules that may be assigned to a particular slot Sj . The
cycle repetition rates and the base cycles of the schedules allo-
cated to a slot determines the extensibility of the slot in the case of
slot-multiplexing. Here we characterize the number of choices for
schedules with slot number Sj as

C(Sj ) =
∑

Rl

α (Rl ), ∀Rl ∈ {1, 2, 4, 8, 16, 32, 64}, (10)

where α(Rl ) denotes the number of choices available for the cycle
repetition rate Rl . In the case of an empty slot, α(Rl ) = Rl . However,
if some messages are already mapped on the slot Sj , α(Rl ) must
be smaller than Rl . The grade of extensibility of a slot Sj is thus

de!ned as

P2(Sj ) =
C(Sj )

C(Ŝj )
, (11)

where C(Ŝj ) denotes the number of schedule choices if Sj is empty.
Here, the idea is to keep as many schedule options as possible for
future. Thus, this addresses the !rst problem discussed in Sec. 3.2.

Extensibility index: The above two metrics quantify the extensi-
bility of a slot from di$erent perspectives. However, to understand
the trade-o$ between the two extensibility measures for a particular
slot, a combined metric can be derived as

E(Sj ) = P1(Sj )P2(Sj ), ∀Sj ∈ SST ∪ SDYN . (12)

The extensibility index helps the system designer to observe the
extensibility of a slot by considering both the number of available
schedules for future messages and the corresponding real-time
capabilities, and therefore, the resource bottlenecks for communi-
cation can be identi!ed and suitable scheduling strategies can be
employed.

E!ective network extensibility: The extensibility index is only
de!ned for a speci!c slot Sj . To represent the extensibility of a
FlexRay cluster, we sum them up for all the slots,

EFR =
1

N +M

N+M∑

Sj=1

E(Sj ). (13)

Consider further thatM denotes the set ofmessages to be scheduled
andL ⊆ M denotes the set of messages that that have already been
assigned feasible schedules and κ denotes the penalty coe"cient.
We can then represent the e$ective network extensibility as

Eef f =max (EFR −
κ( |M | − |L |)

N +M
, 0) (14)

3.4 Extensibility-driven Schedule Synthesis
Schedule synthesis is an important problem in the design of FlexRay-
based ECU networks. The extensible schedule synthesis addresses
the problem of assigning messages to FlexRay schedules so that
the real-time requirement of the messages are met and the network
extensibility is optimized, i.e., the network is more likely to accom-
modate future messages. Towards this, we !rst need to derive the
conditions for meeting the real-time requirements, i.e., the message
will be successfully transmitted and that the worst-case network
delay meets the corresponding deadline.

Compatibility Test: To compute the worst-case delay for a mes-
sage mapped on the static segment is straight forward due to its
deterministic nature. The delay for a schedule on a dynamic slot,
on the other hand, depends on the behaviours of the messages
mapped on preceding dynamic slots. Taking the future messages
into consideration, the worst-case delay for a message assigned
to a schedule Θi = {Si ,Bi ,Ri } on the dynamic segment can be
represented as

D̄i = RiTbus + max
k∈Ki

(

Si−1∑

j=N+1

ēj ) + ei . (15)

Here, the !rst term, RiTbus , denotes the blocking time of the sched-
ule, i.e., when a message just missed its schedule, it has to wait until
the next instance of the schedule. The third term, ei , denotes the
transmission time of the message can can be computed as ei = ciδ ,
where ci is the number of minislots required. The second term
calculates the delay component corresponding to the number of
minislots by which the slot Si may shift in the worst-case among



all possible instances of message transmission. Here, Ki represents
the set of cycle numbers in which the slot Si is allocated tomi and

is given by Ki = {Bi + nRi |n ∈ Z ∧ 0 ≤ n < 64
Ri

}. In addition, ēj is

given by

ēj =

{

(cl − 1)δ , ∃
ml ∈L

(Sl = j) ∧ k ∈ Kl

(cwc − 1)δ , otherwise,
(16)

where cwc represents the largest possible size of future messages
in terms of number of minislots consumed and L is the current set
of messages. Here, the !rst case implies that the lower numbered
dynamic slot is already assigned to a message while the second case
considers an empty slot where the largest sized message will be
assigned in future. The worst-case delay D̄i needs to meet the dead-
line di speci!ed for the message. Besides the deadline constraint,
we also need to guarantee that the transmission of the message is
ensured for each instance of the schedule Θi . Here the FlexRay pro-
tocol de!nes a parameter pLatestTx denoting the highest mini-slot
counter that a message transmission is allowed in a communication
cycle. Considering also the future messages, this constraint can be
represented as

µ̄i =
1

δ
max
k∈Ki

(

Si−1
∑

j=N+1

(ēj + δ )). (17)

Therefore, the compatibility test consists of checking simultane-
ously the two conditions

(D̄i ≤ di ) ∧ (µ̄i < pLatestT x ). (18)

Schedule Synthesis: Having de!ned the compatibility test, the
FlexRay schedules can be synthesized towards optimizing the ex-
tensibility using the following algorithm Max-E Heuristic.

Algorithm 1Max-E Heuristic

Input: FlexRay Con!guration, set of messages M
Output: ΘM = {Θi }
1: Rmax,i = ComputeRmax();
2: I = SortByRmax(); // in ascending order
3: for all i ∈ I do
4: for Si = N + 1; Si ≤ (N +M ); Si + + do
5: success = False ;
6: Ei (Si ) = ComputeExtensibility(Si );
7: for all Ri ≤ Rmax,i do
8: for all Bi < Ri do
9: if ((CompatibilityTest() ∧ ProtocolCheck()) == T rue) then
10: success = T rue ;
11: Θi = (Si , Bi , Ri );
12: Ei,new (Si ) = ComputeExtensibility(Si , Θi );
13: Ei,∆(Si ) = Ei (Si ) − Ei,new (Si );
14: StoreSchedule(Θi , Ei,∆(Si ));
15: end if
16: end for
17: end for
18: if ((success == False) ∧ (SlotIsEmpty(Si ) == T rue)) then
19: break;
20: end if
21: end for
22: Θi = MaxExtensibility(Ei,∆);
23: return Θi ;

24: end for

where Rmax,i is de!ned as

Rmax,i =min(2
⌊log2(

min(pi ,di )
2Tbus

)⌋
, 64) (19)

and represents the maximal allowed value of the cycle repetition
rate [5], where pi denotes the period of the message. Here the
maximal repetition rates of all the messages in M are computed

and the messages are sorted according to this value in ascending
order (Line 1 - 2). Then the schedule for each messages is computed
(Line 3 - 23). For each message, we iterate through all possible
slot numbers on the dynamic segment (Line 4) and compute the
extensibility of the slot before assigning a schedule (Line 6). Then,
we iterate through possible values of repetition rate Ri and the
base cycle Bi (Line 7 - 8). For each combination of {Si ,Bi ,Ri },
we !rst check whether the compatibility test is passed and the
schedule is compatible with the protocol (Line 9). If this is true, a
new extensibility Ei,new and the remaining extensibility Ei,δ (Si )
after assigning the schedule are computed. These results are then
stored for further selection. If no valid schedule can be found until
an empty slot is reached, we do not assign any schedule for the
current message (Line 18 - 20), since if compatibility test fails for
the current empty slot, there will not be any slot after this that can
meet this conditions. Once all possible schedules for the message is
stored, we choose to assign the message to a schedule that maximize
the remaining extensibility (Line 22).

4 CONCLUDING REMARKS
Extensibility is an important metric in the design of automotive
E/E architectures that represents the ability of the system to ac-
commodate changes and additional applications without or with
minimal changes to the current design. Extensibility-driven design
optimizes the design towards maximizing this ability and thus mak-
ing it easier to add additional applications and reduce the cost for
re-design, test and validation of existing applications. In this paper,
we have discussed the extensibility metric and extensibility-driven
design for two setting based respectively on CAN and FlexRay.
Although extensibility is a metric that has become increasingly
more important in the automotive domain, there have not been
su"cient related works addressing this problem. Therefore, more
research e#orts are necessary towards accurate yet light-weight
characterization of this metric under di#erent settings and e"cient
extensibility-driven design methods.
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